Transgenic Strategies for Enhancement of Nematode Resistance in Plants
نویسندگان
چکیده
Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.
منابع مشابه
Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance
The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsR...
متن کاملTomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes
Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited re...
متن کاملConcerns of resistant markers in marine ecosystem transformed plants
World population growth and requirement to global food security, application of genetic engineering and utilization of transgenic organisms have made more important. Using this technology, without regarding to its risks, can cause loses to environment. To generate transgenic organisms, selection systems are applied that cause to selective growth of transformed cells. Antibiotic resistance genes...
متن کاملAgrobacterium-Mediated Transformation of the Oryza sativa Thaumatin-Like Protein to Canola (R Line Hyola308) for Enhancing Resistance to Sclerotinia sclerotiorum
Background: Canola is an agro-economically oilseed crop. Yield loss due to fungal disease of stem rot caused by Sclerotinia sclerotiorum is a serious problem in canola cultivation. Thaumatin-like proteins are large groups of the pathogenesis-related proteins which provide resistance to the fungal infection in response to invading pathogens and play a key role in plant defense s...
متن کاملHeterologous Expression of the Secale cereal Thaumatin-Like Protein in Transgenic Canola Plants Enhances Resistance to Stem Rot Disease
Canola (Brassica napus L.) is an important oilseed crop. A serious problem in cultivation of this crop andyield loss, are due to fungal disease stem rot caused by Sclerotinia sclerotiorum. The pathogenesis-related(PR) proteins have the potential for enhancing resistance against fungal pathogen. Thaumatin-like proteins(TLPs) have been shown to have antifungal activity on variou...
متن کامل